Search results for " Mitochondrial [Medical Subject Headings]"

showing 10 items of 112 documents

Clinical manifestations and management of four children with Pearson syndrome.

2011

Pearson marrow-pancreas syndrome is a fatal disorder mostly diagnosed during infancy and caused by mutations of mitochondrial DNA. We hereby report on four children affected by Pearson syndrome with hematological disorders at onset. The disease was fatal to three of them and the fourth one, who received hematopoietic stem cell transplantation, died of secondary malignancy. In this latter patient transplantation corrected hematological and non-hematological issues like metabolic acidosis, and we therefore argue that it could be considered as a useful option in an early stage of the disease.

MalePediatricsmedicine.medical_specialtyMitochondrial DiseasesAnemiaMitochondrial diseasemedicine.medical_treatmenttrapianto cellule staminali emopoieticheHematopoietic stem cell transplantationDiseaseDNA MitochondrialLipid Metabolism Inborn Errorsmitochondrial disordersFatal OutcomeMuscular DiseasesCause of Deathhematopoietic stem cell transplantation; mitochondrial disorders; Pearson marrow-pancreas syndrome; trapianto cellule staminali emopoietiche; malattie mitocondriali; sindrome di PearsonGeneticsmedicineCongenital Bone Marrow Failure SyndromesHumansChildGenetics (clinical)Pearson marrow-pancreas syndromeCause of deathPearson syndromebusiness.industryAcyl-CoA Dehydrogenase Long-ChainHematopoietic Stem Cell TransplantationInfantMetabolic acidosissindrome di Pearsonmedicine.diseaseAnemia SideroblasticTransplantationChild PreschoolImmunologymalattie mitocondrialiFemalebusinessGene DeletionAmerican journal of medical genetics. Part A
researchProduct

Growth hormone replacement therapy prevents sarcopenia by a dual mechanism: improvement of protein balance and of antioxidant defenses.

2013

The aim of our study was to elucidate the role of growth hormone (GH) replacement therapy in three of the main mechanisms involved in sarcopenia: alterations in mitochondrial biogenesis, increase in oxidative stress, and alterations in protein balance. We used young and old Wistar rats that received either placebo or low doses of GH to reach normal insulin-like growth factor-1 values observed in the young group. We found an increase in lean body mass and plasma and hepatic insulin-like growth factor-1 levels in the old animals treated with GH. We also found a lowering of age-associated oxidative damage and an induction of antioxidant enzymes in the skeletal muscle of the treated animals. GH…

Malemedicine.medical_specialtyAgingSarcopeniaIGF-1. Mitochondrial biogenesis Myostatin p70S6KHormone Replacement TherapyMyostatinProtein degradationmedicine.disease_causeAntioxidantsInternal medicineMedicineAnimalsRats WistarMuscle Skeletalbiologybusiness.industryProtein turnoverSkeletal muscleProteinsmedicine.diseaseMitochondria MuscleRatsSomatropinEndocrinologymedicine.anatomical_structureMitochondrial biogenesisSarcopeniaGrowth Hormonebiology.proteinBody CompositionGeriatrics and GerontologybusinessOxidative stressThe journals of gerontology. Series A, Biological sciences and medical sciences
researchProduct

Autism and Intellectual Disability Associated with Mitochondrial Disease and Hyperlactacidemia

2015

Autism spectrum disorder (ASD) with intellectual disability (ID) is a life-long debilitating condition, which is characterized by cognitive function impairment and other neurological signs. Children with ASD-ID typically attain motor skills with a significant delay. A sub-group of ASD-IDs has been linked to hyperlactacidemia and alterations in mitochondrial respiratory chain activity. The objective of this report is to describe the clinical features of patients with these comorbidities in order to shed light on difficult diagnostic and therapeutic approaches in such patients. We reported the different clinical features of children with ID associated with hyperlactacidemia and deficiencies i…

Malemedicine.medical_specialtyPediatricsMitochondrial DiseasesUbiquinoneMitochondrial diseaseautismArticleCatalysislcsh:ChemistryInorganic Chemistrychemistry.chemical_compoundFolic AcidCarnitinemental disordersIntellectual disabilitymedicineHumansHyperlactatemiaCarnitinePhysical and Theoretical Chemistrypossible mitochondrial diseasePsychiatrylcsh:QH301-705.5Molecular BiologySpectroscopyCoenzyme Q10business.industryOrganic ChemistryInfantCognitionVitaminsGeneral Medicinemedicine.diseaseComputer Science ApplicationsMitochondrial respiratory chainlcsh:Biology (General)lcsh:QD1-999chemistryintellectual disabilityChild Development Disorders PervasiveAutism spectrum disorderChild Preschoolmuscular toneAutismFemalebusinessmedicine.drugInternational Journal of Molecular Sciences
researchProduct

Insulin resistance as common molecular denominator linking obesity to Alzheimer’s disease

2015

Alzheimer’s disease (AD) is an aging-related multi-factorial disorder to which metabolic factors contribute at what has canonically been considered a centrally mediated process. Although the exact underlying mechanisms are still unknown, obesity is recognized as a risk factor for AD and the condition of insulin resistance seems to be the link between the two pathologies. Using mice with high fat diet (HFD) obesity we dissected the molecular mechanisms shared by the two disorders. Brains of HFD fed mice showed elevated levels of APP and Aβ 40 /Aβ 42 together with BACE, GSK3β and Tau proteins involved in APP processing and Aβ accumulation. Immunofluorescence, Thioflavin T staining experiments…

Malemedicine.medical_specialtyTime FactorsAdipokineAmyloidogenic ProteinsInflammationBiologyDiet High-Fatmedicine.disease_causeAdipokines Alzheimer’s disease gene expression inflammation insulin resistance mitochondrial dysfunction obesity.Settore BIO/09 - FisiologiaGlycogen Synthase Kinase 3MiceInsulin resistanceAlzheimer DiseaseInternal medicinemedicineAnimalsInsulinObesityReceptorGSK3BGlycogen Synthase Kinase 3 betaSettore BIO/16 - Anatomia UmanaNeurodegenerationBrainmedicine.diseaseReceptor InsulinMice Inbred C57BLDisease Models AnimalOxidative StressInsulin receptorEndocrinologyGene Expression RegulationNeurologyCase-Control Studiesbiology.proteinCytokinesNeurology (clinical)Amyloid Precursor Protein SecretasesInsulin Resistancemedicine.symptomOxidative stressSignal Transduction
researchProduct

Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.

2007

International audience; Aging triggers several abnormalities in muscle glycolytic fibers including increased proteolysis, reactive oxygen species (ROS) production and apoptosis. Since the mitochondria are the main site of substrate oxidation, ROS production and programmed cell death, we tried to know whether the cellular disorders encountered in sarcopenia are due to abnormal mitochondrial functioning. Gastrocnemius mitochondria were extracted from adult (6 months) and aged (21 months) male Wistar rats. Respiration parameters, opening of the permeability transition pore and ROS production, with either glutamate (amino acid metabolism) or pyruvate (glucose metabolism) as a respiration substr…

Malemuscle atrophyMESH : Cell Aging[SDV]Life Sciences [q-bio]MESH : Reactive Oxygen SpeciesMitochondrion0302 clinical medicineGlycolysisMESH: AnimalsMESH : Muscle SkeletalMESH : Fatty AcidsCellular SenescencePhospholipidsMESH: Superoxide Dismutasereactive oxygen speciesMESH : Free Radicals0303 health sciencesMESH: Muscle SkeletalMESH : RatsFatty Acidsfatty acid profile of mitochondrial lipidsMESH: Reactive Oxygen SpeciesPyruvate dehydrogenase complexMESH: Fatty Acidsmitochondria[SDV] Life Sciences [q-bio]BiochemistryMESH: Cell AgingMESH: CalciumMESH : MitochondriaCell agingPyruvate decarboxylationmedicine.medical_specialtyFree RadicalsMESH: RatsCellular respirationMESH: MitochondriaMESH : MaleCell Respirationchemistry.chemical_elementOxidative phosphorylationBiologyCalciumMESH : Rats WistarMESH : Phospholipids03 medical and health sciencesMESH: Free RadicalsInternal medicinemedicineAnimalsMESH : Superoxide DismutaseRats WistarMuscle SkeletalMESH : Calcium030304 developmental biologyMESH: Phospholipidscalciumpermeability transition poreSuperoxide Dismutaseagingaging;calcium;fatty acid profile of mitochondrial lipids;mitochondria;muscle atrophy;permeability transition pore;reactive oxygen species;Animals;Calcium;Cell Aging;Cell Respiration;Fatty Acids;Free Radicals;Male;Mitochondria;Muscle;Skeletal;Phospholipids;Rats;Wistar;Reactive Oxygen Species;Superoxide DismutaseCell BiologyMESH: Rats WistarMESH: MaleRatsEndocrinologychemistryMESH : Cell RespirationMESH : AnimalsMESH: Cell Respiration030217 neurology & neurosurgery
researchProduct

Active Fragments from Pro- and Antiapoptotic BCL-2 Proteins Have Distinct Membrane Behavior Reflecting Their Functional Divergence

2010

International audience; BACKGROUND:The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction.METHODOLOGY/PRINCIPAL FINDINGS:Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the…

Membrane lipidsLipid BilayersMolecular Sequence Databcl-X Proteinlcsh:MedicineApoptosisBiologyCell LineProtein–protein interactionMembrane LipidsMice03 medical and health sciences0302 clinical medicineProtein structureMembrane activityAnimalsHumansAmino Acid Sequence[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]lcsh:ScienceLipid bilayerInner mitochondrial membranebcl-2-Associated X Protein030304 developmental biologyMice KnockoutMicroscopy0303 health sciencesMultidisciplinarySequence Homology Amino Acidlcsh:RCytochromes cCell Biology/Cellular Death and Stress ResponsesFibroblastsPeptide FragmentsMitochondriaCell biologyBiochemistry/Molecular EvolutionMembrane proteinBiophysics/Membrane Proteins and Energy Transductionlcsh:QHydrophobic and Hydrophilic Interactions030217 neurology & neurosurgeryFunctional divergenceResearch ArticleBH3 Interacting Domain Death Agonist ProteinProtein BindingPLoS ONE
researchProduct

Polymeric Oriented Monolayers and Multilayers as Model Surfaces

1985

All living cells are surrounded by a lipid bilayer membrane in which a variety of proteins (e.g., enzymes) are embedded (fluid mosaic model; Figure 1). Phospholipids and cholesterol represent the major part of the lipids of a biomembrane. Figure 2 illustrates the structure of some typical amphiphilic membrane components with hydrophobic alkyl chains and hydrophilic head groups. The amount of protein in biological membranes varies between 40 and 60%(3); however, in highly specialized membranes values between 20% (myelin sheath of nerve axons; electrical isolator) and 75% (mitochondrial inner membrane; enzyme system of the respiratory chain) may occur. Furthermore, the incorporation of protei…

MembraneChemistryAmphiphileBiophysicsRespiratory chainBiological membraneSpectrinLipid bilayerFluid mosaic modelInner mitochondrial membrane
researchProduct

Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications

2017

Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS) and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1), mitofusin-2 (MFN2) and optic atrophy (OPA-1), while fission is controlled by mitochondrial fission 1 (FIS1), dynamin-related protein 1 (DRP1) and mitochondrial fission factor (MFF). PARKIN and (PTEN)-induced putative kinase 1 (PINK1) partici…

MiD51 mitochondrial dynamics proteins of 51 kDaΔΨm mitochondrial membrane potential0301 basic medicineMitochondrial fission factorClinical BiochemistryMitochondrial DegradationMFN2Review ArticleTXNIP thioredoxin interacting proteinMitochondrial DynamicsBiochemistryAdenosine TriphosphateGRP78 78 kDa glucose-regulated proteinMFF mitochondrial fission factorMFN2 mitofusin 2TRX2 thioredoxin 2Redox biologylcsh:QH301-705.5NF-κB nuclear factor kappa Blcsh:R5-920MitophagyType 2 diabetesDRP1 dynamin-related protein 1FIS1 fission protein 1BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3MitochondriaOPA1 optic atrophy 1SIRT1/3 sirtuin 1/3Biochemistrymitochondrial fusionTGF-β1 transforming growth factor-β1Mitochondrial fissionOMM outer mitochondrial membranelcsh:Medicine (General)MiD49 mitochondrial dynamics proteins of 49Nox 4 NADPH oxidase-4IMM inner mitochondrial membraneFIS1ATF6 activating transcription factor 6PINK1mTOR mammalian target of rapamycinCHOP C/EBP homologous proteinBiologymdivi-1 mitochondrial division inhibitor-1Mitochondrial Proteins03 medical and health sciencesROS reactive oxygen speciessXBP1 spliced X-box binding protein 1UCP-1 uncoupling protein-1MFN1 mitofusin 1SOD superoxide dismutaseLC3 1 A/1B-light chain 3HumansPINK1 (PTEN)-induced putative kinase 1S3 15-OxospiramilactoneOrganic ChemistrymtDNA mitochondrial DNAAMPK AMP-activated protein kinase030104 developmental biologyDiabetes Mellitus Type 2Mitochondrial biogenesislcsh:Biology (General)Oxidative stressp38 MAPK p38 mitogen-activated protein kinasep62/SQSTM1 ubiquitin and sequestosome-1Reactive Oxygen SpeciesRedox Biology
researchProduct

Lack of Functional Trehalase Activity in Candida parapsilosis Increases Susceptibility to Itraconazole

2022

Central metabolic pathways may play a major role in the virulence of pathogenic fungi. Here, we have investigated the susceptibility of a Candida parapsilosis mutant deficient in trehalase activity (atc1Δ/ntc1Δ strain) to the azolic compounds Fluconazole and Itraconazole. A time-course exposure to Itraconazole but not Fluconazole induced a significant degree of cell-killing in mutant cells compared to the parental strain. Flow cytometry determinations indicated that Itraconazole was able to induce a marked production of endogenous ROS together with a simultaneous increase in membrane potential, these effects being irrelevant after Fluconazole addition. Furthermore, only …

Microbiology (medical)Medicaments antifúngicsbiology_otherPlant ScienceFongs patògensfluconazole; itraconazole; ROS; mitochondrial activity; trehalase; trehalose; <i>Candida parapsilosis</i>Ecology Evolution Behavior and Systematics
researchProduct

Genes, Ageing and Longevity in Humans: Problems, Advantages and Perspectives.

2006

Many epidemiological data indicate the presence of a strong familial component of longevity that is largely determined by genetics, and a number of possible associations between longevity and allelic variants of genes have been described. A breakthrough strategy to get insight into the genetics of longevity is the study of centenarians, the best example of successful ageing. We review the main results regarding nuclear genes as well as the mitochondrial genome, focusing on the investigations performed on Italian centenarians, compared to those from other countries. These studies produced interesting results on many putative "longevity genes". Nevertheless, many discrepancies are reported, l…

Mitochondrial DNAAgingProteasome Endopeptidase ComplexNuclear geneApolipoproteins geneticsInsulin-Like Growth Factor I geneticsmedia_common.quotation_subjectApolipoprotein E4LongevityBiologyGenetic polymorphisms ageing longevity centenarians association studies mitochondrial DNABiochemistryDNA MitochondrialInflammation geneticsApolipoprotein E4 geneticsCytokines geneticsAnimalsHumansAlleleInsulin-Like Growth Factor ILongevity geneticsGenemedia_commonGenetic associationGeneticsAged 80 and overInflammationPolymorphism GeneticAryldialkylphosphataseSuperoxide DismutaseLongevitySuperoxide Dismutase geneticsGeneral MedicineClusterin geneticsPoly(ADP-ribose) Polymerases geneticsAging geneticsApolipoproteinsClusterinTumor Suppressor Protein p53 geneticsGenesEvolutionary biologyTraitCytokinesGene poolPoly(ADP-ribose) PolymerasesTumor Suppressor Protein p53Aryldialkylphosphatase geneticsDNA Mitochondrial geneticsProteasome Endopeptidase Complex physiology
researchProduct